

## AGRICULTURAL TILLING Overview

- SCC
  - **2801000003**
- Pollutants
  - Filterable PM<sub>10</sub>, PM<sub>2.5</sub>

7.0

Preparation of Fine Particulate Emissions Inventories

## AGRICULTURAL TILLING NEI Method

- Activity Data (no. of acres of land tilled)
  - 1998 County-Level Activity Data
    - Acres of crops tilled in each county by crop type and by tilling method obtained from CTIC
    - Five tilling methods include:
      - no till
      - mulch till
      - ridge till
      - 0 to 15 percent residue
    - 15 to 30 percent residue

7-3

## AGRICULTURAL TILLING NEI Method (cont.)

- Emission Factor (mass of TSP per acre tilled)
  - Emission factor comprises:
    - Constant of 4.8 lbs/acre pass
    - Silt content of the surface soil
    - Number of tillings per year (conservation and conventional use)
    - Particle size multiplier for PM<sub>10</sub> and PM<sub>2.5</sub>

7-4

Preparation of Fine Particulate Emissions Inventories

## AGRICULTURAL TILLING NEI Method (cont.)

- Emission Factor (cont.)
  - Silt content

| Soil Type        | Silt | Content (%) |
|------------------|------|-------------|
| Silt Loam        |      | 52          |
| Sandy Loam       | 33   |             |
| Sand             | 12   |             |
| Loamy Sand       | 12   |             |
| Clay             | 29   |             |
| Clay Loam        | 29   |             |
| Organic Material |      | 10-82       |
| Loam             | 40   |             |

 Soil types assigned to counties by comparing USDA surface soil and county maps

7-5

Preparation of Fine Particulate Emissions Inventories

# AGRICULTURAL TILLING NEI Method (cont.)

- Emission Factor (cont.)
  - Number of Tillings



7-6

## AGRICULTURAL TILLING NEI Method (cont.)

Emission Calculation

 $E = c * k * s^{0.6} * p * a$ 

where: E = PM emissions, lbs per year

c = constant 4.8 lbs/acre-pass

k = dimensionless particle size multiplier (PM<sub>10</sub>= 0.21;

 $PM_{2.5} = 0.042$ 

s = silt content of surface soil, defined as the mass fraction of particles smaller than 75 μm diameter found in soil to a depth of 10 cm (%)

p = number of passes or tillings in a year

a = acres of land tilled

7-7

Preparation of Fine Particulate Emissions Inventories

## AGRICULTURAL TILLING NEI Method (cont.)

- Emission equation used for years prior to 1999
- For 1999/2002, number of acres tilled for each of the five tillage types was estimated based on linear interpolation of national-level data available for 1998 and 1999/2002
- Developed national growth factors by tillage type for 1999/2002, using 1998 as basis
- Growth factors applied to county level emissions for 1998 to estimate county level emissions for 1999/2002
- Assumed no controls

7-8

Preparation of Fine Particulate Emissions Inventories

# AGRICULTURAL TILLING Improving the NEI

- Use crop-specific acreage and tilling practice data from state/local agencies
- Use state/local emission factors
- Perform field study to determine local silt content percentage of surface soil
- Crop Calendars: Develop using state/local data to determine time and frequency of activities (e.g., land prep., planting, and tilling)

7-9

### California Air Resources Board (CARB) Study

- Reference
  - Computing Agricultural PM<sub>10</sub> Fugitive Dust Emissions Using Process Specific Emission Rates and GIS, Patrick Gaffney and Hong Yu, CARB
  - Presented at 12<sup>th</sup> International Emission Inventory Conference, San Diego, CA, April 29 May 1, 2003
  - Paper and slides available in PDF files:

http://www.epa.gov/ttn/chief/conference/ei12/index.html

7-10

Preparation of Fine Particulate Emissions Inventories

### CARB Study (cont.)

- Statewide PM<sub>10</sub> EI for:
  - Land preparation activities
  - Harvest activities
- Goals:
  - Obtain current, crop-specific acreage data
  - Develop crop-specific temporal profiles (crop calendars)
  - Develop emission factors for all crops

7-11

Preparation of Fine Particulate Emissions Inventories

### CARB Study (cont.)

- Crop-specific Acreage Data
  - County-level data from CA Dept. of Food and Agriculture
  - Data generated annually by crop and by county
  - Includes over 200 crops and 30 million acres

7-12

### CARB Study (cont.)

- Crop Calendars
  - Developed for 20 most important crop types
    - Importance based on acreage and potential emissions
  - Define temporal periods of farming operation activities by crop type

7-13

Preparation of Fine Particulate Emissions Inventoria

### Example Crop Calendar for Corn

| Farming Operations | Crop<br>Cycles | Passes<br>Per Crop<br>Cycle | Fraction of<br>Acreage<br>Per Cycle | Passes During Month |     |     |     |     |     |     |     |     |     |     |     |
|--------------------|----------------|-----------------------------|-------------------------------------|---------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|                    | Per Year       |                             |                                     | Jan                 | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Det |
| Land Preparation   |                |                             |                                     |                     |     |     |     |     |     |     |     |     |     |     |     |
| Stubble Disc       | - 1            | - 1                         | 1.0                                 |                     |     |     |     |     |     |     |     |     |     |     |     |
| Finish Disc        | 1              | - 1                         | 1.0                                 |                     |     |     |     |     |     |     |     |     |     |     |     |
| List & Fertilize   | 1              | - 1                         | 1.0                                 |                     |     |     |     |     |     |     |     |     |     |     |     |
| Mulch Beds         | 1              | 1                           | 1.0                                 |                     |     |     |     |     |     |     |     |     |     |     |     |
| Planting           | 1              | 1                           | 1.0                                 |                     |     |     |     |     |     |     |     |     |     |     |     |
| Cultivation        | 1              | 2                           | 1.0                                 |                     |     |     |     |     |     |     |     |     |     |     |     |
| Uanaatlaa          |                |                             |                                     |                     | _   | _   | _   | _   | _   | _   | _   |     |     | _   | _   |

(Reference: Computing Agricultural PM<sub>In</sub>, Fugitive Dust Emissions Using Process Specific Emission Rates and GIS, prepared by Patrick Gaffney and Hong Yu from California Air Resources Board for U.S. EPA 2003 Annual Emission Inventory Conference.)

7-14

Preparation of Fine Particulate Emissions Inventories

## CARB Study (cont.)

- Emission Factors (EFs)
  - Previous Els:
    - Land Preparation: AP-42 Tilling factor (4.0 (lbs PM<sub>10</sub>/acre-pass) applied to all operations
    - Harvesting: Estimated for only 3 crop types for which EFs were available
  - Improvements:
    - Conducted field testing to develop EFs for more operations
    - Crop & operation specific (for crop calendars)

7-15

### CARB Study (cont.)

### **Land Preparation Emission Factors**

#### (lbs PM<sub>10</sub>/acre-pass)

Root Cutting0.3Discing, Tilling, Chiseling1.2Ripping, Subsoiling4.6Land Planning & Floating12.5Weeding0.8

• EFs used as surrogates for other land prep. operations

7-16

Preparation of Fine Particulate Emissions Inventories

## CARB Study (cont.)

### **Harvest Emission Factors**

(lbs PM<sub>10</sub>/acre-pass)

Cotton Harvest 3.4
Almond Harvest 40.8
Wheat Harvest 5

 Assigned to over 200 crop types and adjusted using a "division factor" based on consultation with agricultural industry

7-17

Preparation of Fine Particulate Emissions Inventories

### PAVED ROADS Overview

- SCC: 2294000000
- Pollutants
  - PM<sub>10</sub>, PM<sub>2.5</sub>

7-18

### **PAVED ROADS NEI Method**

- Activity Data [vehicle miles traveled (VMT) on paved roads]
  - State-Level Activity Data

State/road type level VMT from paved roads = Total State/road type-level VMT - State/road type-level unpaved road VMT

- Because of differences in methodology between the calculation of total and unpaved VMT, there may be cases where unpaved VMT is higher than total VMT
- In these cases, unpaved VMT is reduced to total VMT, and paved road VMT is assigned a value of

Preparation of Fine Particulate Emissions Inventories

## **PAVED ROADS** NEI Method (cont.)

- Activity Data [vehicle miles traveled (VMT) on paved roads] (cont.)
  - Paved road VMT temporally allocated by month using NAPAP temporal allocation factors for total VMT.

7-20

Preparation of Fine Particulate Emissions Inventories

## **PAVED ROADS** NEI Method (cont.)

- Emission Factor
  - Empirical emission factor equation from AP-42

 $PAVED = PSDPVD * (PVSILT/2)^{0.65} * (WEIGHT/3)^{1.5} - C$ 

PAVED where:

= paved road dust emission factor for all vehicle classes combined (grams per mile)

PSDPVD = constant for particles of less than 10 microns in diameter (7.3 g/mi for PM<sub>10</sub>)

**PVSILT** 

= road surface silt loading (g/m²) WEIGHT = average weight of all vehicle types

combined (tons)

emission factor for 1980's vehicle fleet exhaust, brake wear, and tire wear

7-21

## PAVED ROADS NEl Method (cont.)

- Emission Factor (cont.)
  - Paved road silt loadings assigned to each of the twelve functional roadway classifications
    - Road types with average daily traffic volume (ADTV) < 5,000 vehicles per day = 0.20 g/m²
    - 5,000 vehicles per day = 0.20 g/ Freeways = 0.015 g/m<sup>2</sup>
  - See AP-42, Section 13.2.1 for more information
  - AP-42 emission factors for paved roads only apply to reentrained dust
  - Use MOBILE model for estimating PM from tailpipe exhaust, brake wear, and tire wear.

7-22

Preparation of Fine Particulate Emissions Inventories

## PAVED ROADS NEI Method (cont.)

- Emission Factor (cont.)
  - Adjustments for precipitation

Emission factor multiplied by a rain correction factor, calculated as follows:

where: p = the number of days in a given month with greater than 0.01 inches of precipitation

- Precipitation data used in the paved road emission factor calculations were taken from stations representative of urban areas in each state
- Final emission factors developed by month at the State and road type level for the average vehicle fleet

7-23

Preparation of Fine Particulate Emissions Inventor

## PAVED ROADS NEI Method (cont.)

Emission Calculation

$$EM_{s,r,m} = VMT_{s,r,m} * EF_{s,r,m}$$

where: EM =  $PM_{10}$  emissions, tons per month

VMT = VMT, miles per month

EF = tons per mile

M = month

S = State

R = road type class

PM<sub>2.5</sub> = PM<sub>10</sub> emissions of in Op245 late Emissions Inventories

### **PAVED ROADS** NEI Method (cont.)

- Allocation of State Emissions to County Level
  - Paved road emissions are allocated to the county level according to the fraction of total State VMT in each county for the specific road type

$$PVDEMIS_{X,Y} = PVDEMIS_{ST,Y} * VMT_{X,Y} / VMT_{ST,Y}$$

where:  $\begin{array}{ll} \text{PVDEMIS}_{X,Y} = & \text{paved road PM emissions (tons) for county x} \\ \text{PVDEMIS}_{ST,Y} = & \text{paved road PM emissions (tons) for the entire} \\ \text{State for road type y} \\ \text{VMT}_{X,Y} = & \text{total VMT (million miles) in county x and road type y} \\ \end{array}$  $\mathsf{VMT}_{\mathsf{X},\mathsf{Y}}$ 

type y

total VMT (million miles) in entire State for road type y

 $VMT_{ST,Y}$ 

## **PAVED ROADS** NEI Method (cont.)

- Controls
  - Control efficiency of 79 percent applied to:
    - Urban and rural roads in serious PM NAAs; and
    - Urban roads in moderate PM NAAs
      - Corresponds to vacuum sweeping on paved roads twice per month
  - Rule penetration varies by road type and NAA classification (serious or moderate)

7-26

Preparation of Fine Particulate Emissions Inventories

Preparation of Fine Particulate Emissions Inventories

## **PAVED ROADS** Improvements to NEI Method

VMT on paved roads for local area

(Source: State Dept. of Transportation, Mobile Source Section of Environmental Dept)

Local registration data representing the average weight of vehicles (since this variable is weighted most heavily)

(Source: State Dept. of Motor Vehicles, Mobile Source Section of Environmental Dept)

### **PAVED ROADS**

### Improvements to NEI Method (cont.)

- Perform sampling to refine value used for silt content
  - Only consider if you can collect enough samples to give a good representation of roads in your area
- Obtain and use local precipitation values

(Source: National Weather Bureau)

7-28

Preparation of Fine Particulate Emissions Inventorie

### UNPAVED ROADS Overview

- SCC 2296000000
- PM10-PRI/FIL and PM2.5-PRI/FIL
- No condensible material, so:PM-PRI = PM-FIL

7-29

Preparation of Fine Particulate Emissions Inventories

### UNPAVED ROADS NEI Method

- Activity
  - State level VMT from U.S. DOT, Federal Highway Administration allocated to counties by population
  - Activity Data (VMT on unpaved roads)
  - State-level activity for urban and rural local functional classes

7-30

# UNPAVED ROADS NEI Method (cont.)

 $Unpaved\ VMT_{Roadtype} = Mileage_{Roadtype}\ *ADTV\ *DPY$ 

Where:

Unpaved VMT = road type specific unpaved VMT

(miles/year)

Mileage = total number of miles of unpaved

roads by functional class (miles)

ADTV = Average daily traffic volume

(vehicle/day)

DPY = number of days per year

7-31

Preparation of Fine Particulate Emissions Inventories

## UNPAVED ROADS NEI Method (cont.)

- Non-local functional classes including:
  - Rural minor collector, rural major collector, rural minor arterial, rural other principal arterial, urban collector, urban minor arterial, and urban other principal arterial
  - ADTV not available for non-local roads, estimated from local urban and rural VMT and mileage

7-32

Preparation of Fine Particulate Emissions Inventories

## UNPAVED ROADS NEI Method (cont.)

ADTV = VMT/Mileage

Where:

ADTV = average daily traffic volume for State

and federally maintained roadways

VMT = urban/rural VMT on county-maintained

roadways (miles/year)

MILEAGE = urban/rural state-level roadway mileage

of county-maintained roadways (miles)

7-33

### **UNPAVED ROADS** NEI Method (cont.)

- Add Non-local functional class VMT to local functional class VMT to determine State total unpaved VMT by road type
- Unpaved road VMT temporally allocated by month using NAPAP temporal allocation factors for total VMT

### **UNPAVED ROADS** NEI Method (cont.)

- Emission Factor
  - AP-42 emission factor equation

 $EF = [k^*(s/12)^*(S/30)^{0.5}]/[(M/0.5)^{0.2}] - C$ 

Where:

EF = size specific emission factor (pounds per VMT)

k = empirical constant (1.8 lb/VMT for PM10-PRI, 0.27 for PM2.5-PRI)

= surface material silt content (%)

M = surface material moisture content (%)

= mean vehicle speed (mph)

= emission factor for 1980's vehicle fleet exhaust, brake wear, and tire wear

### **UNPAVED ROADS** NEI Method (cont.)

- NEI Default Emission Factor Input Values
  - Surface material silt content(s)
    - Average state-level values developed available at ftp://ftp.epa.gov/EmisInventory/finalnei99ver2/criteria/documentation/xtra\_sources/
  - Mean vehicle weight (W)
    - National average value of 2.2 tons (based on typical vehicle mix)
  - Surface material moisture content (M<sub>drv</sub>)

## **UNPAVED ROADS** NEI Method (cont.)

- NEI Default Emission Factor Input Values (cont.)
  - Number of days exceeding 0.01 inches of
  - Precipitation (p)
     Precipitation data from one meteorological station in state used to represent all rural areas of the state
  - Local climatological data available from National Climatic Data Center at <a href="http://www.ncdc.noaa.gov/oa/ncdc.html">http://www.ncdc.noaa.gov/oa/ncdc.html</a>

## **UNPAVED ROADS** Improvements to NEI

- Summary
  - Review NEI defaults for representativeness
  - Use local data when possible for activity and emission factor inputs
  - If resources are limited, focus on collecting data
    - Local precipitation data
    - Local VMT estimates

7-38

Preparation of Fine Particulate Emissions Inventories

## **UNPAVED ROADS** Case Study - Overview

- Case Study: County level emissions inventory for unpaved roads
  - See Case Study Number 7-1

## UNPAVED ROADS Case Study - Solution

- Case Study: County level emissions inventory for unpaved roads
  - See Handout 7-1

7-40

Preparation of Fine Particulate Emissions Inventorie

## CONSTRUCTION

### Overview

- SCCs:
  - Residential 2311010000
  - Commercial 2311020000
  - Road 2311030000
- PM10-PRI/FIL and PM2.5-PRI/FIL
  - No condensibles, so PM-PRI = PM-FIL
- 1999 PM2.5-PRI NEI
  - Res 5%
  - Comm 40%
  - Road 55%

7-41

Preparation of Fine Particulate Emissions Inventories

## RESIDENTIAL CONSTRUCTION NEI Method

- Activity Data: Number of acres disturbed per vear
- Estimated using housing start data
  - Total no. of regional monthly housing unit starts (HS)
  - National monthly housing unit starts available for:
    - 1-unit housing
    - 2-unit housing
    - 3-4 unit housing
    - 5+ unit housing

7-42

## RESIDENTIAL CONSTRUCTION NEI Method (cont.)

 Regional housing unit starts by housing category estimated as follows:

 $Reg. \ \textit{HS by Category} = \textit{Total Reg. HS x} \ \underline{\textit{National HS by Category}} \\ \hline \textit{Total National HS}$ 

(Reference: Housing Starts Report, 1999, U.S. Department of Commerce, Bureau of the Census, Manufacturing and Construction Division, Residential Construction Branch.)

7-43

Preparation of Fine Particulate Emissions Inventories

## RESIDENTIAL CONSTRUCTION NEI Method (cont.)

- Monthly regional housing starts by housing category summed to obtain an annual total
- County Activity
  - Annual no. of building permits in each county for:
    - Housing structures with 1-unit
    - Housing structures with 2-units
    - Housing structures with 3-4 housing units
    - Housing structures with 5+ units

(Reference: Building Permits Survey, 1999, U.S. Department of Commerce, Bureau of the Census, Manufacturing and Construction Division, Residential Construction Branch.)

7-44

Preparation of Fine Particulate Emissions Inventories

## RESIDENTIAL CONSTRUCTION NEI Method (cont.)

- Regional no. of residential structure starts based on the reported no. of housing unit starts:
  - No. of 1-unit housing units = no. of 1-unit housing structures
  - No. of 2 unit housing units divided by 2 units per structure
  - No. of 3-4 unit housing units divided by 3.5 units per structure
  - No. of 5+ unit housing units divided by regionspecific units per structure as calculated from building permits data

7-45

## RESIDENTIAL CONSTRUCTION NEI Method (cont.)

 Estimate county no. of residential structure starts by housing category as follows:

County Structure Starts = Regional Structure Starts x

<u>County Bldg Permits</u>

Regional Bldg Permits

7-46

Preparation of Fine Particulate Emissions Inventories

## RESIDENTIAL CONSTRUCTION NEI Method (cont.)

 Estimated acres disturbed from county no. of structures:

1-unit structures: 1/4 acre per building
 2-unit structures: 1/3 acre per building
 Apartments: 1/2 acre per building

Estimated duration of construction:

1-unit structures: 6 months2-unit structures: 6 monthsApartments: 12 months

7-47

Preparation of Fine Particulate Emissions Inventories

## RESIDENTIAL CONSTRUCTION NEI Method (cont.)

- Estimate no. of apartment structures by adding the no. of 3-4 unit buildings and of 5+ unit buildings
- Estimate no. of 1-unit houses with and without basements
  - Multiply regional no. of 1-unit structures by regional percentage of one-family houses with basements and subtract product from total no. of 1-unit houses to estimate 1-unit houses w/out basements

(Reference: Characteristics of New Houses - Table 9. Type of Foundation by Category of House and Location, 1998, U.S. Department of Commerce, Bureau of the Census.)

7-48

### RESIDENTIAL CONSTRUCTION NEI Method (cont.)

- For 1-Unit Housing with Basements
  - Estimate cubic yards of dirt moved per house
    - Multiply assumed 2,000 square feet per structure by assumed average basement depth of 8 feet
    - Add-in 10 percent of above cubic yard estimate to account for footings and other backfilled areas adjacent to basement

7-49

Preparation of Fine Particulate Emissions Inventorion

## RESIDENTIAL CONSTRUCTION NEI Method (cont.)

- 1-Unit Housing with Basements
  - PM10-PRI: 0.011 tons/acre/month plus 0.059 tons/1000 cubic yards of on-site cut/fill
- 1-Unit Housing without Basements and all 2-Unit Housing
  - PM10-PRI: 0.032 tons/acre/month
- Apartments
- PM10-PRI: 0.11 tons/acre/month
   PM2.5-PRI = 0.2 \* PM10-PRI

7-50

Preparation of Fine Particulate Emissions Inventories

## RESIDENTIAL CONSTRUCTION NEI Method (cont.)

1-Unit Structures with Basements

Emissions = (0.011 tons  $PM_{10}/acre/month$ ) x B x f x m) + 0.059 tons  $PM_{10}/1000$  yards<sup>3</sup> of cut/fill)

where: B =

= no. of housing starts with

basements;

f = buildings-to-acres conversion factor (1/4 acre per building);

m = duration of construction activity in

months.

7-51

### RESIDENTIAL CONSTRUCTION NEI Method (cont.)

 1-Unit Structures without Basements, All 2 Structures, and Apartments

Emissions =  $(0.032 \text{ tons } PM_{10}/acre/month) \times B \times f \times m)$ 

where: B =

no. of housing starts without

buildings-to-acres conversion factor;

duration of construction activity in m =

months

Preparation of Fine Particulate Emissions Inventories

## RESIDENTIAL CONSTRUCTION NEI Method (cont.)

- Apply a control efficiency of 50 percent for both PM10-PRI and PM25-PRI emissions for PM-10 NAAs; all other areas 0 percent
- Control efficiency represents Best Available Control Method (BACM) controls on fugitive dust construction activities in these counties

Preparation of Fine Particulate Emissions Inventories

### RESIDENTIAL CONSTRUCTION **NEI Correction Parameters**

- Applied to final emissions for all 3 construction categories
- Soil Moisture Level

Moisture Level Corrected Emissions = Base Emissions x (24/PE)

where: PE = Precipitation-Evaporation value for

county

Compiled statewide average Precipitation-Evaporation (PE) values according to Thornthwaite's PE Index

### RESIDENTIAL CONSTRUCTION NEI Correction Parameters

Silt Content

Silt Content Corrected Emissions = Base Emissions x (s/9%)

where: s = % dry silt content in soil for area being inventoried

 County-specific dry silt values are applied to PM10-PRI emissions for each county

7-55

Preparation of Fine Particulate Emissions Inventories

## RESIDENTIAL CONSTRUCTION Improvements to NEI

 Obtain local data for new construction housing starts, permits for additions/modifications to existing homes

Source: State Housing Agency or Real Estate Association

- Develop a building to acres conversion factor for acres disturbed per construction unit
- Obtain information on seasonality of residential construction practices
- Obtain local information on soil moisture content, silt content, and control efficiency

7-56

Preparation of Fine Particulate Emissions Inventorie

## RESIDENTIAL CONSTRUCTION Case Study - Overview

- Case Study: County level emissions inventory for residential construction
  - See Case Study Number 7-2

7-57

## RESIDENTIAL CONSTRUCTION Case Study - Solution

- Case Study: County level emissions inventory for residential construction
  - See Handout 7-2

7-58

Preparation of Fine Particulate Emissions Inventories

## COMMERCIAL CONSTRUCTION NEI Method

- Activity data: No. of acres disturbed per year
- National-Level Activity
  - Dollar Value of Construction Put in Place, 1999
  - National data allocated to Counties

(Reference: Table 1. Annual Value of Construction Put in Place in the United States for Nonresidential buildings: 1996 - 2000, Millions of constant dollars, U.S. Department of Commerce, Bureau of the Census.)

7-59

Preparation of Fine Particulate Emissions Inventories

## COMMERCIAL CONSTRUCTION NEI Method (cont.)

- Allocation of National Data to Counties
  - National level activity allocated to counties using 2 data sources:
    - Annual Average Employment for SIC 154, Data Series ES202, Bureau of Labor Statistics, 1999
    - Annual Average Employment for SIC 154, MarketPlace 3.0, Dun & Bradstreet, 1999
  - Applied Dun & Bradstreet county proportion of the State total to the BLS State total to estimate employment for counties where data were withheld

7-60

## **COMMERCIAL CONSTRUCTION** NEI Method (cont.)

- Activity Data Conversion
  - Converted dollar value to acres disturbed using a conversion factor of 1.6 acres/106 dollars applied to the estimated county-level construction valuation data

### COMMERCIAL CONSTRUCTION **NEI Emission Calculations**

- PM10-PRI Emission Factor = 0.19 tons/acre/month
- PM2.5-PRI = 0.2 \* PM10-PRI

Preparation of Fine Particulate Emissions Inventories

## **COMMERCIAL CONSTRUCTION** NEI Emission Calculations (cont.)

Emission formula for calculating the emissions

Emissions = (0.19 tons/acre/month) x \$ x f x m

- where: \$ = dollars spent on nonresidential construction in millions
  - f = dollars-to-acres conversion factor
  - m = duration of construction activity in months (assumed 11 months)

## COMMERCIAL CONSTRUCTION Improvements to NEI

 Obtain local information on number of acres disturbed per construction event or per construction dollars spent

Source: Construction Industry Association

- Obtain information on location, average duration, and seasonality of commercial construction practices
- Obtain local information on soil moisture content, silt content, and control efficiency

7.64

Preparation of Fine Particulate Emissions Inventories

## ROAD CONSTRUCTION NEI Method

- Activity data: Number of acres disturbed
- State-Level Activity
  - Obtained State expenditure data for capital outlay for six classifications
    - Interstate, urban
    - Interstate, rural
    - Other arterial, urban
    - Other arterial, rural
    - Collectors, urban
    - Collectors, rural

(Reference: Highway Statistics, Section IV - Finance, Table SF-12A, "State Highway Agency Capital Outlay - 1999." Federal Highway Administration.)

7-65

Preparation of Fine Particulate Emissions Inventorie

## ROAD CONSTRUCTION NEI Method (cont.)

- State-Level Activity (Continued)
  - Expenditures include all improvement types except for:
    - Minor widening
    - Resurfacing
    - Bridge rehabilitation
    - Safety
    - Traffic operation and control
    - Environmental enhancement and other

7-66

### ROAD CONSTRUCTION NEI Method (cont.)

- Estimate miles of new road constructed
  - \$4 million/mile for interstate roads
  - \$1.9 million/mile for other arterial and collector roads

(Reference: Personal Communication with North Carolina Department of Transportation)

7-67

Preparation of Fine Particulate Emissions Inventorie

## ROAD CONSTRUCTION NEI Method (cont.)

- Estimate acres for each road type using estimates of acres disturbed per mile:
  - Interstate, urban and rural; Other arterial, urban -15.2 acres/mile
  - Other arterial, rural 12.7 acres/mile
  - Collectors, urban 9.8 acres/mile
  - Collectors, rural 7.9 acres/mile

(Reference: Estimating Particulate Matter Emissions from Construction Operations, prepared by Midwest Research Institute for U.S. Environmental Protection Agency, 1999.)

7-68

Preparation of Fine Particulate Emissions Inventories

### ROAD CONSTRUCTION NEI Method (cont.)

- Sum across road types to yield state total of acres disturbed
- Activity Data Allocation to Counties
  - Distributed state-level estimates of acres disturbed to counties according to housing starts
    - see residential construction for description of development of county-level housing start data

7-69

### ROAD CONSTRUCTION NEI Emission Calculations

- PM10-PRI Emission Factor = 0.42 tons/acre/month
- PM2.5-PRI = 0.2 \* PM10-PRI

7-70

Preparation of Fine Particulate Emissions Inventorie

## ROAD CONSTRUCTION NEI Emission Calculations (cont.)

• The formula for calculating emissions is:

Emissions =  $(0.42 \text{ tons } PM10/acre/month) \times x \times f1 \times f2 \times d$ 

where: \$ = State expenditures for capital outlay on road construction

f1 = \$-to-miles conversion factor

f2 = miles-to-acres conversion factor

 d = duration of roadway construction activity in months (assumed 12 months)

7-71

Preparation of Fine Particulate Emissions Inventories

## ROAD CONSTRUCTION Improvements to NEI

 Obtain information on location and timing of road construction practices in area

(Source: State Department of Transportation)

- Obtain local data on the number of miles constructed and the number of acres disturbed per project or per mile of road constructed
- Obtain local estimate for duration of projects

7-72

## ROAD CONSTRUCTION Improvements to NEI (cont.)

Obtain information on private road construction activity

(Source: Construction Industry Association)

 Obtain local information on soil moisture content, silt content, and control efficiency

7-73

Preparation of Fine Particulate Emissions Inventorie

## ROAD CONSTRUCTION Case Study - Overview

- Case Study: County level emissions inventory for road construction activities
  - See Case Study Number 7-3

7-74

Preparation of Fine Particulate Emissions Inventories

# ROAD CONSTRUCTION Case Study -Solution

- Case Study: County level emissions inventory for road construction activities
  - See Handout 7-3

7-75